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M
ultiscale modeling and computation
is a rapidly evolving area of research
that will have a fundamental impact
on computational science and applied
mathematics and will influence the

way we view the relation between mathematics
and science. Even though multiscale problems have
long been studied in mathematics, the current 
excitement is driven mainly by the use of mathe-
matical models in the applied sciences: in partic-
ular, material science, chemistry, fluid dynamics,
and biology. Problems in these areas are often
multiphysics in nature; namely, the processes at dif-
ferent scales are governed by physical laws of dif-
ferent character: for example, quantum mechanics
at one scale and classical mechanics at another.

Emerging from this intense activity is a need for
new mathematics and new ways of interacting with
mathematics. Fields such as mathematical physics
and stochastic processes, which have so far re-
mained in the background as far as modeling and
computation is concerned, will move to the fron-
tier. New questions will arise, new priorities will be
set as a result of the rapid evolution in the com-
putational fields.

There are several reasons for the timing of the
current interest. Modeling at the level of a single
scale, such as molecular dynamics or continuum

theory, is becoming relatively mature. Our com-
putational capability has reached the stage when
serious multiscale problems can be contemplated,
and there is an urgent need from science and tech-
nology—nano-science being a good example—for
multiscale modeling techniques.

It is not an exaggeration to say that almost all
problems have multiple scales. We organize our
time according to days, months, and years, re-
flecting the multiple time scales in the dynamics of
the solar system. Another example with multiple
time scales is that of protein folding. While the
time scale for the vibration of the covalent bonds
is on the order of femtoseconds (10−15 s), folding
time for the proteins may very well be on the order
of seconds. Well-known examples of problems with
multiple length scales include turbulent flows, mass
distribution in the universe, and vortical structures
on the weather map [1]. In addition, different phys-
ical laws may be required to describe the system at
different scales. Take the example of fluids. At the
macroscale (meters or millimeters), fluids are 
accurately described by the density, velocity, and
temperature fields, which obey the continuum
Navier-Stokes equations. On the scale of the mean
free path, it is necessary to use kinetic theory (Boltz-
mann’s equation) to get a more detailed description
in terms of the one-particle phase-space distribu-
tion function. At the nanometer scale, molecular 
dynamics in the form of Newton’s law has to be used
to give the actual position and velocity of each 
individual atom that makes up the fluid. If a liquid
such as water is used as the solvent for protein 
folding, then the electronic structures of the water
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molecules become important, and these are 
described by Schrödinger’s equation in quantum
mechanics. The boundaries between different 
levels of theories may vary, depending on the sys-
tem being studied, but the overall trend described
above is generally valid. At each finer scale, a more
detailed theory has to be used, giving rise to more
detailed information on the system.

There is a long history in mathematics for the
study of multiscale problems. Fourier analysis has
long been used as a way of representing functions
according to their components at different scales.
More recently, this multiscale, multiresolution rep-
resentation has been made much more efficient
through wavelets. On the computational side, sev-
eral important classes of numerical methods have
been developed which address explicitly the 
multiscale nature of the solutions. These include
multigrid methods, domain decomposition meth-
ods, fast multipole methods, adaptive mesh re-
finement techniques, and multiresolution 
methods using wavelets.

From a modern perspective, the computational
techniques described above are aimed at efficient
representation or solution of the fine-scale prob-
lem. For many practical problems, full represen-
tation or solution of the fine-scale problem is 
simply impossible for the foreseeable future 
because of the overwhelming costs. Therefore we
must seek alternative approaches that are more 
efficient. One classical approach is to use analytic
techniques to derive effective models at the scale
of interest. An early example of such a technique
is the averaging method. Consider, for example, a
system of ordinary differential equations written
in the action-angle variables

(1)
ϕt =

1
ε
ω(I)+ f (ϕ, I)

It = g(ϕ, I),

where ϕ is the fast variable, which varies on the
time scale of O(ε), ε� 1; I is the slow variable,
which mainly varies on the time scale of O(1) ; and
f and g are assumed to be 2π-periodic in ϕ. The
averaging method gives the leading-order behav-
ior (Ī ) of the slow variable I, which is often the 
quantity of interest, by an averaged equation [3] (see
Figure 2).

(2) Īt = G(Ī) = 1
2π

∫ 2π

0
g(ϕ, Ī)dϕ.

Another example of mathematical techniques for
multiscale problems is the homogenization method.
Consider the problem

(3)
∂uε

∂t
= ∇ ·

(
a
(
x,
x
ε

)
∇uε(x, t)

)
, x ∈ Ω,

with the boundary condition uε|∂Ω = 0. In this 
problem the multiscale nature comes from the co-

efficients a
(
x, xε

)
, which contain two scales: a scale

of O(ε) and a scale of O(1) . Not only is (3) a nice
model problem for the homogenization technique,
it also describes important physical processes such
as heat conduction in a composite material. For sim-
plicity let us assume that a(x, y) is periodic in y.
Then it can be shown [4] that for ε� 1, uε(x, t) can
be expressed in the form

uε(x, t) = U (x, t)+ εu1

(
x,
x
ε
, t
)

(4)

+ ε2u2

(
x,
x
ε
, t
)
+ · · · ,

where U satisfies a homogenized equation
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Figure 1. Different laws of physics are required to describe
properties and processes of fluids at different scales.

0 1 2 3 4 5 6
3

2. 5

2

1. 5

1

0. 5

0

0.5

1

1.5

Figure 2. Illustration of the averaging method. The lower
curve is ϕ as a function of t , the upper solid curve is I, and the
dashed line is Ī .
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(5)
∂U
∂t

= ∇ · (A(x)∇U (x, t))

in Ω and U|∂Ω = 0. Here A(x) may be thought of 
as being the effective coefficient describing the 
effective properties of the system on the scale of
O(1) . Determining A(x) usually requires solving
families of so-called cell problems. In the one-
dimensional case, however, A(x) is simply given by
the harmonic average

(6) A(x) =
(∫ 1

0

1
a(x, y)

dy
)−1

.

Many other mathematical techniques have been
developed to study multiscale problems, including
boundary-layer analysis [12], semiclassical methods
[15], geometric theory of diffractions [11], stochas-
tic mode elimination [14], and renormalization group
methods [8], [19].

Despite this progress, purely analytical techniques
are still very limited when it comes to problems of
practical interest. As a result, the overwhelming 
majority of problems have been approached using
empirical techniques to model the small scales in
terms of the macroscale variables by empirically de-
rived formulas. In fact, a large part of the progress
in physical sciences lies in such empirical modeling.
A familiar example is that of the continuum theory
of fluid dynamics. To derive the system of equations
for fluids, we apply Newton’s law to an arbitrary 
volume of fluid denoted by Ω:

(7)
D
Dt

∫
Ω
ρudV = F (Ω),

where DDt is the material derivative, ρ and u are the
density and velocity fields respectively, and F (Ω)
is the total force acting on the volume of fluid in
Ω. The forces consist of body forces such as grav-
ity, which we neglect for the present argument, due
to the long-range interaction of the molecules that
make up the fluid, and forces due to the short-range
interaction between the molecules, such as the Van
der Waals interaction. In the continuum theory,
the short-range forces are represented as a surface
integral of the stress tensor τ, which is a macro-
scopic idealization of the small scale effects,

(8) F (Ω) =
∫
∂Ω

(τ · n̂)ds,

where n̂ is the unit outward normal of Ω. The
stress τ can be expressed as τ = −pI + τd, where
p is the pressure, I is the identity tensor, and τd is
the dissipative part of the stress. In order to close
the system, we need to express τd in terms of u.
In the simplest empirical approximation, τd is as-
sumed to be a linear function of ∇u. This leads to

(9) τd = µ
∇u+ (∇u)T

2
,

where µ is called the viscosity of the fluid. Substi-
tuting this into Newton’s law and adding the 
incompressibility condition gives rise to the well-
known Navier-Stokes equation:

(10) ρ(ut + (u · ∇)u)+∇p = µ
u, ∇ · u = 0.

In such a macroscopic description, all molecular
details of the liquid are lumped into a single para-
meter, the viscosity. Fluids for which (9) gives an 
accurate description of the small-scale effects are
called Newtonian fluids.

This simple derivation illustrates how, in general,
continuum models in the form of partial differen-
tial equations are derived. One typically starts with
some universal conservation laws such as (7). This
requires introducing certain currents or flux den-
sities, which are then expressed by some postulated
constitutive relations such as (9). In this way, we 
obtain the heat equation for thermal conduction by
postulating Fourier’s law, the diffusion equation for
mass transport using Fick’s law, and the porous-
medium equation using Darcy’s law.

Such empirical ad hoc descriptions of the small
scales are used almost everywhere in science and
engineering. Consider, for example, the hierarchy
of models depicted in Figure 1. In molecular dy-
namics, empirical potentials are used to model the
forces between atoms, mediated by the electrons.
In kinetic theory, empirical collision kernels are
used to describe probabilistically the short-range
interaction between the atoms and the molecules.
Other examples include plasticity, crack propaga-
tion, and chemical reactions. While much progress
has been made using such empirical approaches,
their shortcomings have also been recognized, 
especially so in recent years, since numerical 
simulations based on the empirical models are
now accurate enough that the modeling error can
be clearly identified. Microscale simulation meth-
ods such as electronic structure calculations have
matured, enabling us to ask more ambitious ques-
tions. Moreover, the empirical approach often lacks
information about how microstructural changes,
such as the conformation of polymers in a poly-
meric fluid, affect the macroscale properties of
the system.

Examples of a New Class of Multiscale
Methods
In view of the limitations of the empirical approach,
several “first principle”-based multiscale methods
have been proposed in recent years. Some of these
methods are discussed below.
First Principle Molecular Dynamics
Molecular dynamics describes the behavior of a col-
lection of atoms by their positions and momenta,
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denoted by {xj, pj}Nj=1 . The dynamics follows 
Newton’s second law:

mjẍj = −
∂V0

∂xj
,

where mj is the mass of the j -th atom and
V0(x1, . . . , xN ) is the potential energy of the system,
which is due mainly to the Coulomb interaction 
between the charges, determined by the positions
of the nuclei and the state of the electrons. In this
example the macroscale process is the molecular
dynamics of the nuclei. The microscale process is
the state of the electrons, which determines V0.
Since the electrons are so much lighter than the 
nuclei, one can assume to a good approximation
that they are at the ground state determined by 
the positions of the nuclei. This is the so-called
Born-Oppenheimer approximation. The potential
energy surface determined in this way is called
the Born-Oppenheimer potential energy surface.

However, determining explicitly the Born-
Oppenheimer potential energy surface is a rather
daunting task. As a result, most molecular dy-
namics simulations use an empirical potential such
as the Lennard-Jones potential.

In 1985 Car and Parrinello [7] developed a
multiscale procedure for probing the Born-
Oppenheimer potential energy surface “on the fly”
during molecular dynamics simulations. This new
method bridges the different temporal and spatial
scales in the system, bypassing the need for 
empirical potentials. It has found wide application
in chemistry, material sciences, and biology.
The Quasicontinuum Method
In the continuum theory of nonlinear elasticity,
we are often interested in finding the displace-
ment field by solving a variational problem

min
u
E(u) =

∫
Ω
f (∇u)dx,

where E is the total elastic energy, u is the displace-
ment field, and f is the stored energy functional, 
subject to certain loading or boundary conditions.
This approach takes for granted that the function 
f is explicitly given. In reality the process of finding
f is rather empirical and often even crude.

A different methodology called the quasicon-
tinuum method was proposed in [6], [16] for the
analysis of crystalline materials. In this case the mi-
croscopic model comprises molecular mechanics of
the atoms that make up the crystal. Given a macro-
scopic triangulation of the material, let VH be the
standard continuous piecewise-linear finite-element
space over this triangulation. For U ∈ VH, ∇U is con-
stant on each element K . Let EK(U ) be 
the energy of a unit cell in an infinite volume 
uniformly deformed according to the constant
deformation gradient ∇U|K. In the quasicontinuum

approximation, the total energy associated with
the trial function U is then given by

Ẽ(U ) =
∑
K
nKEK(U ),

where nK is the number of unit cells in the element
K. This approach bypasses the necessity of model-
ing f empirically. Instead, the effective f is computed
on the fly using microscopic models.

What we have described is the simplest version
of the quasicontinuum method. There are many 
improvements, in particular to deal with defects in
the crystal [16].
Kinetic-Hydrodynamic Models of Complex Fluids
Consider, for example, polymers in a solvent. The
basic equations follow again from that of mass
and momentum conservation:

ρ(ut + (u · ∇)u)+∇p = µs∆u+∇ · τp
∇ · u = 0.

Here we have decomposed the total stress into two
parts: one part, τp, due to the polymer and the other
part due to the solvent, for which we used New-
tonian approximation; µs is the solvent viscosity.
Traditionally, τp is modeled empirically using 
constitutive relations. The most common models
are a generalized Newtonian model and various 
viscoelastic models. It is generally acknowledged
that it is an extremely difficult task to construct
such empirical models in order to describe the
flow under all experimental conditions.

An alternative approach was proposed in the
classical work of Kramers, Kuhn, Rouse et al. [5].
Instead of using empirical constitutive relations,
this approach uses a simplified kinetic descrip-
tion for the conformation of the polymers. In the
simplest situation, the polymers are assumed to 
be dumbbells, each of which consists of two beads
connected by a spring. Its conformation is there-
fore described by that of the spring. The dumbbells
are convected and stretched by the fluid, and at the
same time they experience spring and Brownian
forces:

γ
(
Qt + (u · ∇)Q− (∇u)TQ

)
= F (Q)+

√
kBTγ Ẇ (t).

Here Q denotes the conformation of the dumbbell,
F (Q) is the spring force, γ is the friction coefficient,
Ẇ (t) is temporal white noise, kB is the Boltzmann
constant, T is the temperature, and I is the identity
tensor. If we have Q , we can compute the polymer
stress τp via

τp = nkBTI + E(F (Q)⊗Q),

where n is the polymer density and E denotes ex-
pectation over the Brownian forces. These equations
are valid in the dilute regime when direct interac-
tion between polymers can be neglected.
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The dumbbell model is a very simplified one. In
many cases, it has to be improved. This can be
done in a number of ways (see [5]).

Many other multiscale methods that are similar
to those mentioned above have been developed in
the past few years. We mention in particular the
work of Abraham et al. on coupling finite element
continuum analysis with molecular dynamics and
tight binding [2], the work on coupling kinetic equa-
tions with hydrodynamic equations, Vanden-Eijn-
den’s method for solving stochastic ordinary dif-
ferential equations with multiple time scales [18],
superparametrization techniques in meteorology in
which the parameters for turbulent transport are
determined dynamically by local microscale simu-
lations, and the work of Kevrekidis et al. on bifur-
cation analysis based on microscopic models [17].
By explicitly taking advantage of the separation of
scales, these methods become much more efficient
than solving the full fine-scale problem. This is a com-
mon feature of the new class of multiscale methods
we are interested in. In contrast, traditional multi-
scale techniques such as the original multigrid
methods are rather blind to the special features of
the problem, since they are aimed at solving the full
fine-scale problem everywhere in the macroscale do-
main. Of course many practical problems such as
turbulent flows do not have separation of scales. For
these problems, other special features, such as self-
similarity in scales, must be identified first before
we have a way of modeling them more efficiently
than simply solving the fine-scale problem by brute
force or resorting to ad hoc models.

Before continuing, let us mention that there are
a number of semianalytical and seminumerical
multiscale techniques. A good example is the
coarse-grained Monte Carlo models of Katsoulakis,
Majda, and Vlachos [10], in which self-consistency
is guaranteed by enforcing detailed balance in the
coarse-grained model as well as the fact that the
microscopic model and the coarse-grained model
share the same mesoscopic limit.

A General Framework for Multiscale
Methods
Given such a variety of multiscale methods in many
different applications, it is natural to ask whether
a general framework can be constructed. The 
general framework should ideally
• unify existing methods,
• give guidelines on how to design new methods

and improve existing ones,
• provide a mathematical theory for stability and

accuracy of these methods.
One proposal for such a general framework 

was made in [9], and it goes under the name of 
heterogeneous multiscale method (abbreviated
HMM). This name was suggested to emphasize the
multi-physics nature of the problems that it intends
to handle. In contrast, the multigrid method would
be called homogeneous, since it uses the same
physical and mathematical model at different
scales.

The setup of the problem is the following. We
are interested in the macroscopic state of a system,
with state variables denoted by U. However, we
have at our disposal only a microscopic model for
the microscale state variable u. The variables U and
u are linked together by a compression operator
Q such that Qu = U .

Before discussing HMM, it is useful to recall the
classical Godunov scheme for gas dynamics [13] as
a model example for methodology.

Consider, for example, a scalar conservation law
of the form

(11) ut + f (u)x = 0.

Fix a numerical step size ∆x,∆t > 0, and define the
cell averages

(12) (Qu)(x, t) = U (x, t) = 1
∆x

∫ x+ ∆x2
x− ∆x2

u(y, t)dy.

Then U satisfies the equation

(13)
dU
dt

+ 1
∆x

(
f (u(x+ ∆x

2 , t))− f (u(x− ∆x
2 , t))

)
= 0.

Let xj = j∆x and tn = n∆t. Denote by Unj the nu-
merical approximations of U (x, t) at (xj, tn). Given
{Unj } for all j , the Godunov scheme computes
{Un+1

j } via the following steps:

1. Reconstruction: Let u∆x(x, tn) = Unj if
xj − ∆x

2 ≤ x ≤ xj + ∆x
2 .

2. Riemann Solver: Solve (11) exactly with the ini-
tial condition u(x, tn) = u∆x(x, tn) to time tn+1.
Call that solution ũ.

3. Evaluate the total flux at the cell boundaries (at
xj+ 1

2
=
(
j + 1

2

)
∆x) from t = tn to t = tn+1:

∆t fj+ 1
2
=
∫ tn+1

tn f (ũ(xj+ 1
2
, s))ds .

Traditional Techniques Recent Techniques

Multigrid Method Car-Parrinello Method
Domain Decomposition Quasi-Continuum Method
Multiresolution Methods Superparametrization
Adaptive Mesh Refinement Heterogeneous Multiscale Method
Fast Multipole Method Vanden-Eijnden’s Method
Conjugate Gradient Method Coarse-Grained Monte Carlo Models

Adaptive Model Refinement
Patch Dynamics

Table 1. Traditional and modern computational multiscale
techniques. Traditional multiscale techniques focus on resolv-

ing the fine-scale problem. Modern multiscale techniques try
to reduce the computational complexity by using special fea-

tures in the fine-scale problem, such as scale separation.
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4. Compute {Un+1
j } by

Un+1
j = Unj −

∆t
∆x

(fj+ 1
2
− fj− 1

2
).

Here the microscale and macroscale models are 
respectively (11) and (13). The compression oper-
ator is the cell averaging (12). The Godunov scheme
is a finite-volume method for U in which the fluxes
fj+ 1

2
are computed by solving Riemann problems for

the original microscopic model (11).
HMM can be viewed as a substantial general-

ization of the classical Godunov scheme in which
the finite-volume method is replaced by general
macroscopic schemes, the Riemann solver is re-
placed by the solution of constrained microscale
models, and the cell averaging is typically replaced
by more sophisticated data processing techniques.

There are two main components in HMM. The
first is an overall macroscopic scheme for U. The
second is to estimate the missing macroscopic
data needed for the implementation of the macro-
scopic scheme by solving locally the microscopic
model, subject to appropriate constraints.

For dynamical problems, the estimation of the
macroscale data can be done using the following
generalization of the Godunov procedure.
1. Reconstruction. From Un, construct un such that
Qun = Un . This reconstruction is clearly not
unique and is problem dependent.

2. Microscale evolution. Evolve the microscale
model with initial data u(x, tn) = un(x) , subject
to appropriate constraints such as boundary
conditions. Scale separation should be taken
into account to minimize the spatial/temporal
size of the computational domain for the mi-
croscale solver.

3. Data processing. Process the data obtained in
step 2 to extract the needed macroscale data.
This step often involves ensemble as well as
spatial/temporal averaging.
While some general guildelines exist for steps 1

and 3, step 2 is quite specific to the problem.
One special case of HMM is the gas kinetic

scheme [20]. There the microscopic state is the
one-particle phase-space distribution function. The
microscopic model is the kinetic equation. The
macroscopic state is the hydrodynamic field 
variables, and the macroscale solver is also the 
finite-volume method. The data that need to be 
estimated from the microscale model are the fluxes
{f n
j+ 1

2
}. The estimation of this data proceeds by a

generalization of the Godunov procedure: namely,
at t = tn the one-particle phase-space distribution
function is constructed near each cell boundary
using the local macroscale data; the kinetic equa-
tion is then solved and the hydrodynamic fluxes
evaluated using the local solutions of the kinetic
equation.

One can also replace the microscopic model,
here the kinetic equation, by other models such as
molecular dynamics. This has been done recently
at Princeton by Xiantao Li and Weiqing Ren. The al-
gorithm proceeds in the same way. The macroscale
variables and solvers are the same. The data that
need to be estimated are again the fluxes at the cell
boundaries. Instead of reconstructing the single-
particle distribution function f, one reconstructs
the positions and momenta of a collection of 
particles near each cell boundary, consistent with
the local hydrodynamic variables. One then evolves
molecular dynamics with suitable boundary 
conditions, at the same time collecting the data of
microscopic fluxes. This data is then processed to
obtain the macroscopic fluxes necessary for the
macroscale solver. The algorithmic details are
rather substantial, in particular in the treatment of
the boundary condition and the processing of the
data from molecular dynamics. A typical example
of the data collected from molecular dynamics is
illustrated in Figure 3.

It is also straightforward to apply HMM to the
parabolic problem (3). One can start by writing (3)
in a conservation form

(14) uεt +∇ · Jε = 0,

where Jε = −a(x, xε )∇uε . Again, for the macroscale
solver we will choose the finite-volume method. The
macroscale variables are cell averages of uε . The
macroscale fluxes at the cell boundaries are the data
that need to be estimated, and they are computed
using the three-step generalized Godunov proce-
dure as follows. From the cell averages, one can
make a piecewise-linear reconstruction at the cell
boundaries. Equation (3) is then solved with a 

0 50 100 150 200 250 300
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Figure 3. Typical behavior of microscale fluxes as a function
of time obtained from molecular dynamics simulation.
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suitable boundary condition. A typical plot of the
microscopic flux Jε as a function of the microscale
time step is shown in Figure 4. Clearly Jε saturates
after a short relaxation time to some quasi-
stationary value, and this stationary value is what
we use as the macroscale flux.

The two examples, Figures 3 and 4, show the 
difference between typical data obtained from 
conservative and from dissipative microscopic
processes. Obviously the different data should 
be processed by different techniques. This is an 
example of the new techniques that need to be 
developed and analyzed. It is discussed in detail
in the papers that can be found at http://www.
math.princeton.edu/multiscale.

So far we have discussed cases when the
macroscale solver is the finite-volume method. One
can also use other methods, such as the finite-
element method, as the macroscale solver. In that
case the data that need to be estimated are the
stiffness and mass matrices. This can be for both
elliptic and dynamic problems by solving appro-
priately formulated microscale problems, as dis-
cussed in [9].

Besides the examples discussed above, HMM
has also been applied to other homogenization
problems, ordinary differential equations with 
multiple time scales, coupling molecular dynamics
with hydrodynamics, coupling molecular dynamics
with continuum elasticity, porous-medium flows,

and interface dynamics. Along with these applica-
tions, a set of tools has been developed for 
multiscale modeling and computation.

Among the examples of existing multiscale 
methods we discussed earlier, some versions of the
quasicontinuum method, Vanden-Eijnden’s method
for stochastic differential equations [18], and the
multiscale bifurcation analysis method [17] can all
be formulated as examples of HMM.

An important problem is the stability and accu-
racy of these multiscale methods. Since they involve
more than one mathematical model, the numerical
analysis of these methods is quite nonstandard. 
However, a general principle has been established 
in [9] for the numerical analysis of heterogeneous
multiscale methods for what is referred to in [9] as
the type B problems, which include all the problems
we’ve discussed so far. These are problems for which
closed macroscale models exist for suitably chosen
sets of macroscale variables, but the models are not
explicitly available and are very inefficient to use 
directly in numerical computations. Nevertheless,
we can use these models in our analysis. This can be
done without knowing the explicit form of the effec-
tive equations. For that purpose we first define an 
effective macroscale method (EMM) corresponding
to an HMM that involves only the macroscale model.
To define the EMM, one starts with the same macroscale
solver as in HMM, except that one replaces the mi-
croscale model by the macroscale model (with initial
data equivalent to the reconstruction operator) in 
the data estimation step. Examples of EMM are given
in [9].

If this EMM is stable, then we have the follow-
ing error estimate:

‖Uhmm −U0‖ ≤ C(Hk + e(hmm)),

where Uhmm is the HMM solution, U0 is the exact so-
lution of the macroscopic model, k is the order of
accuracy of the EMM, H is the step size of the
macroscale numerical grid, and e(hmm) is the 
error in the estimation of data in the three-step 
procedure discussed earlier. The norm should be
chosen according to the specific problem at hand.
The first term on the right-hand side is the standard
truncation error of EMM. The second term is the new
source of error in HMM due to data estimation.
The error e(hmm) typically depends on the rate 
of relaxation of the microscopic model to local
equilibrium, the accuracy of the microscopic 
solver, and the accuracy of the data-processing
techniques. This general principle has been 
applied to the analysis of HMM for ordinary 
differential equations, quasicontinuum methods,
some models of interacting-particle systems, as
well as a variety of homogenization problems.

Other general methodologies of multiscale 
modeling have been proposed. We mention in par-
ticular the recent version of the quasicontinuum
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Figure 4. Computed flux Jε(x, t) = a
(
x, xε

)
∇uε(x, t) as a

function of the micro time step over one typical macro time

step, for the parabolic homogenization a
(
x, xε

)
= 2+ sin 2π x

ε . 

The bottom figure is a detailed view of the top figure for small 
time steps. Notice that Jε(x, t) quickly settles down (after

about 35 micro time steps) to a quasi-stationary value after a
rapid transient.

http://www.math.princeton.edu/multiscale
http://www.math.princeton.edu/multiscale
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method and patch dynamics of Kevrekidis et al. In
these methods one starts with local simulations
based on the microscale model and performs an
effective macroscale computation through spatial
interpolation and temporal extrapolation on a
macroscale grid. Such a methodology is a bottom-
up approach, in the sense that it is based on the
microscale model and bootstraps the microscale 
results to macroscale. In contrast, HMM is a top-
down approach in that it is based on the macroscale
model, and the microscale model is used only to
supplement the data. Of course, in some specific
cases they may lead to the same method, even
though they are based on different philosophies.
There are several advantages of a top-down ap-
proach: It enables us to develop a framework for
the analysis of the methods, as we discussed above.
It allows for a selection of the most appropriate 
microscopic model according to specific needs;
e.g., for the modeling of polymeric liquids, one 
can choose either the kinetic model or molecular
dynamics as the microscopic model. It also gives
rise to a simple set of design principles, as illus-
trated in the examples in [9].

So far we have discussed only what is referred
to in [9] as the type B problems. Problems of this
type typically exhibit a separation of time scales—
the microscopic process relaxes locally to equilib-
rium on a time scale much shorter than the time
scale for the macroscopic dynamics. Another 
typical class of multiscale problems are referred to
as the type A problems. These are problems with
localized defects around which microscopic 
models have to be used; elsewhere one can use
some macroscopic models. Classical examples of
type A problems include crack propagation in
solids and contact-line dynamics in fluids. If there
is a separation of time scales between the micro-
scopic and the macroscopic processes, then these
problems are also of type B and the principles of
HMM can still be used. Otherwise they should 
be treated using adaptive model refinement 
techniques, which are a further extension of the
well-known adaptive mesh refinement methods
and are sometimes called heterogeneous domain
decomposition.

Outlook
To summarize, the current excitement in multiscale
modeling and computation comes from the prospect
that a new class of numerical and analytical modeling
techniques can be developed by taking into account
the special features, such as scale separation, in a 
very large class of multiscale problems. These new
methods promise to be much more efficient than
those more traditional multiscale techniques such 
as multigrid and multiresolution methods, which are
intended to solve the fine-scale problems all over
the macroscopic domain.

What will be the impact of this new style of mul-
tiscale modeling and computations? From the view-
point of mathematical analysis, the multiphysics
nature of these problems means that numerical
analysis will become much closer to mathematical
physics [21]. In fact, understanding questions that
are traditionally regarded as belonging to mathe-
matical physics will be vital to the progress in mul-
tiscale modeling. From the viewpoint of modeling
problems of scientific and technological interest,
it will allow us to remove the ad hoc procedures
that are commonly used in many areas, such as
plasticity, non-Newtonian fluids, and crack prop-
agation. It will also allow us to deal with problems
that fall in between traditional domains of physi-
cal theories. A good example is nano-science.

We conclude this article with a historical note.
There are two components in the quantitative study
of a scientific or engineering problem: modeling and
solution. Before the age of computers, the solu-
tions of mathematical models were obtained by
special analytic techniques, such as asymptotic
analysis and special functions. This often restricted
the study to very simplified equations. The advent
of computers has made a paradigmatic change 
in the way we analyze practical problems. The
mathematical models can be more realistic when
analytic techniques are replaced by numerical 
methods. Yet in much of computational mathe-
matics, we are used to taking for granted that the
models are given, they are the ultimate truth, and
our task is to provide methods to analyze and solve
them. This shields us from the frontiers of science
where phenomena are analyzed and models are
formulated.

Multiscale, multiphysics modeling brings in a 
new paradigm. Here the problems are given, and a 
variety of mathematical models at different levels
of detail can be considered. The right equation is
selected during the process of computation 
according to the accuracy needs. This brings math-
ematical analysis and computation closer to the 
actual scientific and engineering problems. It may
no longer be necessary to wait for scientists to 
develop simplified equations before computational
modeling can be done. This is an exciting new 
opportunity for computational science and for 
applied mathematics. It will bring applied mathe-
matics closer to other fields of mathematics, as, for
example, mathematical physics and probability
theory. It will also bring these fields closer to 
the frontiers of science. One effect of this devel-
opment should be on education. New courses 
integrating relevant fields of mathematics and 
fundamental principles of science are needed for
the next generation of computational scientists.
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